The Drosophila fragile X-related gene regulates axoneme differentiation during spermatogenesis.
نویسندگان
چکیده
Macroorchidism (i.e., enlarged testicles) and mental retardation are the two hallmark symptoms of Fragile X syndrome (FraX). The disease is caused by loss of fragile X mental retardation protein (FMRP), an RNA-binding translational regulator. We previously established a FraX model in Drosophila, showing that the fly FMRP homologue, dFXR, acts as a negative translational regulator of microtubule-associated Futsch to control stability of the microtubule cytoskeleton during nervous system development. Here, we investigate dFXR function in the testes. Male dfxr null mutants have the enlarged testes characteristic of the disease and are nearly sterile (>90% reduced male fecundity). dFXR protein is highly enriched in Drosophila testes, particularly in spermatogenic cells during the early stages of spermatogenesis. Cytological analyses reveal that spermatogenesis is arrested specifically in late-stage spermatid differentiation following individualization. Ultrastructurally, dfxr mutants lose specifically the central pair microtubules in the sperm tail axoneme. The frequency of central pair microtubule loss becomes progressively greater as spermatogenesis progresses, suggesting that dFXR regulates microtubule stability. Proteomic analyses reveal that chaperones Hsp60B-, Hsp68-, Hsp90-related protein TRAP1, and other proteins have altered expression in dfxr mutant testes. Taken together with our previous nervous system results, these data suggest a common model in which dFXR regulates microtubule stability in both synaptogenesis in the nervous system and spermatogenesis in the testes. The characterization of dfxr function in the testes paves the way to genetic screens for modifiers of dfxr-induced male sterility, as a means to efficiently dissect FMRP-mediated mechanisms.
منابع مشابه
Drosophila Centrosomin Protein is Required for Male Meiosis and Assembly of the Flagellar Axoneme
Centrosomes and microtubules play crucial roles during cell division and differentiation. Spermatogenesis is a useful system for studying centrosomal function since it involves both mitosis and meiosis, and also transformation of the centriole into the sperm basal body. Centrosomin is a protein localized to the mitotic centrosomes in Drosophila melanogaster. We have found a novel isoform of cen...
متن کاملThe Drosophila Fragile X Gene Negatively Regulates Neuronal Elaboration and Synaptic Differentiation
Fragile X Syndrome (FraX) is the most common form of inherited mental retardation. The disease is caused by the silencing of the fragile X mental retardation 1 (fmr1) gene, which encodes the RNA binding translational regulator FMRP . In FraX patients and fmr1 knockout mice, loss of FMRP causes denser and morphologically altered postsynaptic dendritic spines . Previously, we established a Drosop...
متن کاملTwo types of genetic interaction implicate the whirligig gene of Drosophila melanogaster in microtubule organization in the flagellar axoneme.
The mutant nc4 allele of whirligig (3-54.4) of Drosophila melanogaster fails to complement mutations in an alpha-tubulin locus, alpha 1t, mutations in a beta-tubulin locus, B2t, or a mutation in the haywire locus. However, wrl fails to map to any of the known alpha- or beta-tubulin genes. The extragenic failure to complement could indicate that the wrl product participates in structural interac...
متن کاملDrosophila rae1 is required for male meiosis and spermatogenesis.
Previous studies of RAE1, a conserved WD40 protein, in Schizosaccharomyces pombe and mouse revealed a role in mRNA export and cell cycle progression in mitotic cells. Studies of RAE1 in Drosophila showed that the protein localizes to the nuclear envelope and is required for progression through the G1 phase of the cell cycle but not RNA export in tissue culture cells. Drosophila RAE1 also plays ...
متن کاملEstrogen related receptor is required for the testicular development and for the normal sperm axoneme/mitochondrial derivatives in Drosophila males
Estrogen related receptors (ERRs), categorized as orphan nuclear receptors, are critical for energy homeostasis and somatic development. However, significance of ERRs in the development of reproductive organs/organelles/cells remain poorly understood, albeit their homology to estrogen receptors. In this context, here, we show that knockdown of ERR in the testes leads to improperly developed tes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Developmental biology
دوره 270 2 شماره
صفحات -
تاریخ انتشار 2004